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%　 aを正の定数とする。このとき xの関数 f(x) = ax2 を考える。座標平面において，曲線 y = f(x)
上の点 P(t;f(t))における法線を `とする。このとき，次の問いに答えよ。

± 直線 `の方程式を求めよ。

² t > 0のとき，直線 `と曲線 y = f(x)の 2つの共有点のうち，点 Pと異なる共有点を Qとする。点
Qの x座標を qとおく。点 Pが t > 0の範囲で動くとき，qが最大となるときの点 Qの y座標を求めよ。
また，qの最大値を与える tの値を求めよ。

³ kを実数とし，直線 y = kと `の交点を Rとおく。また点 Rの x座標を rとする。点 Pが t ¸ 0の範
囲で動くときの rの最小値を kと aを用いて表せ。

´ 不等式 2
a ¸ y ¸ f(x)の表す領域を Dとする。点 Pが t ¸ 0の範囲で動くとき，領域 Dのなかで直

線 `が通る部分の面積 S(a)を求めよ。

µ a変数 uの関数 a = ue¡3u (u > 0)であるとき，´で求めた面積 S(a)が最小となる uと，そのとき
の S(a)の値を求めよ。ただし eは自然対数の底とする。
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± t ¸ 0のとき　 ` : 2aty = ¡x+ 2a2t3 + t

² 2at ¢ ax2 = ¡x+ 2a2t3 + tを xについて解く。
2a2tx2 + x¡ 2a2t3 ¡ t = 0

これは x = tを解にもつから
(x¡ t)(2a2tx+ 2a2t2 + 1) = 0
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このとき，点 Qの y座標は a$¡ p2a <2 = 2
a
, また tの値は 1p
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³ t ¸ 0のとき ` : 2aty = ¡x+ 2a2 + t3 + t

y = kを代入して
2akt = ¡x+ 2a2t3 + t

これを xについて解くと
x = 2a2t3 + (1¡ 2ak)t

x = rとすると
r = 2a2t3 + (1¡ 2ak)t (= r(t)とおく)
r0(t) = 6a2t2 + (1¡ 2ak)

1¡ 2ak ¸ 0 つまり 0 < k · 1
2a のとき

常に r0 ¸ 0
よって r(t)は単調に増加する。 r(0) = 0であるから r(t) ¸ 0
よって，rの最小値は 0
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よって，rは t = ®で最小値
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をとる。[これ，本番中に冷静に計算できるのだろうか？ 信じられん。]
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´ ³の結果から，領域Dのなかで直線 `が通る部分は次の
図の網目部分である。[y軸の右側と左側に分けて kまたは yで
積分します。]
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[kを yとおいて，yで積分してもよい。曲線部分が xの式で表し
にくいので yで積分しよう。てゆうか，これ，本番中に冷静に計
算できるんでしょうか？ 出題教官の考えが知りたいですね。]

¡ 2¡



粛々と計算していきましょう。

第 1の積分について
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第 2の積分について
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したがって，答えは
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[積分計算はそれほど難しくはないのですが，何せ制限時間のある入試本番で冷静に計算を進めることがで
きるか疑問ですね。]

µ a = ue¡3u (u > 0)であるとき

S(a) = 29
p
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ここで，(ue¡3u)2 = T(u)とおくと
T0(u) = 2 ¢ ue¡3u ¢ (ue¡3u)0 = 2 ¢ ue¡3u ¢ (e¡3u ¡ u ¢ 3e¡3u)

= 2ue¡3u ¢ e¡3u(1¡ 3u) = 2ue¡6u(1¡ 3u)

u > 0であるから，T0(u) = 0のとき，u = 1
3

よって，次の増減表を得る。
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したがって，T(u)は u = 1
3
で最大となる。このとき，S(a)は最小となる。

ゆえに，求める uと S(a)の値は

u =
1
3
; S(a) =

29
p
2

15
¢

1# 1
3
¢ e¡1;2 = 29p215 ¢ 9e2 = 87

p
2
5
e2

[やれやれ，という感じです。最近の問題は見てませんが，この 5問セットは強烈です。息をつく暇もありま
せん。受験した方，お疲れさまでした。]
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